rbt [°] solar	Product catalog	rbtsolar.com
Trackers (T)		(<)

01	Single axis tracker			T-P-1AT-EW/V/1P
TYPE	CONSTRUCTION	MODULE DIRECTION	MODULE LAYOUT	NUMBER OF PILES
Piled (P)	Single axis (1AT)	East-west (EW)	Vertical (V)	

Designed to follow the sun

SEE ONLINE \rightarrow

rbtsolar Product catalog

Trackers (T)

rbtsolar.com

	-)
/	
\leftarrow	

DESCRIPTION

MECHANICS:

- → Strength verification of structure parameters carried out by a specialist laboratory.
- → Various tracker lengths available to suit specific number of strings, and the selection of number and length of the trackers is individually carried out for each project.
- → Design assumptions implemented according to the DFA methodology (Designed for Assembly).
- → Split adaptive bearings adjust its position to variable thermal or geometric deformations of the supporting beam.
- → The use of an intermediate purlin to increase the central support surface of the load-bearing purlin connected to the PV panel.
- → Drive leg is in the same axis as the support columns (the length of the support columns is selected individually, depending on the geographical and geological conditions of the project).
- \rightarrow Standardization of structural elements.
- $\rightarrow\,$ Optimization of screw connections.

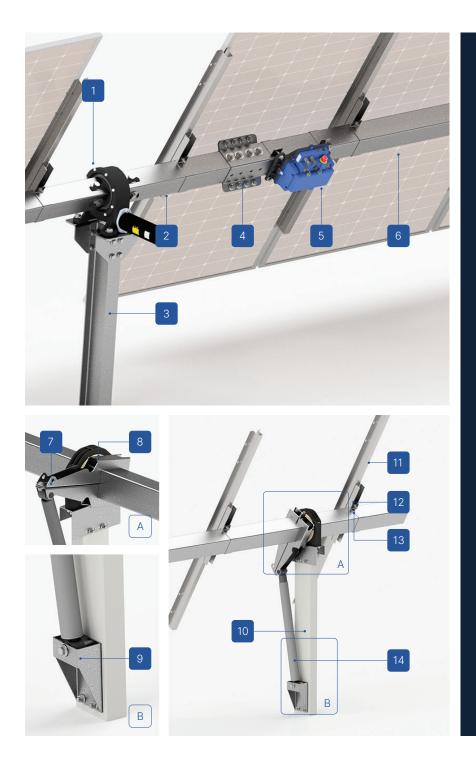
CONTROLS:

- → Device is using an advanced astronomical algorithm to control the position of the panels in relation to the current position of the sun.
- \rightarrow Intuitive installation and startup configuration system.
- → Configurable alarm and notification management.
- \rightarrow Backward algorithm that prevents and minimizes row shading.
- \rightarrow Zigbee[®] wireless communication system, or wired RS-485.
- → Remote monitoring and preventive maintenance to reduce installation downtime (easy integration with SCADA system in the Modbus TCP/IP standard).
- → Possibility of individual configuration of the tracker operation depending on the order of rows and terrain slope.
- → Safety system against excessive wind speed (safe positioning of PV panels).
- → Possibility of using various service modes related to the position of the panels, e.g. snow removal, cleaning.
- \rightarrow Possibility to use a snow level detector.
- → Possibility of current and historical verification of installation parameters via cloud data storage.

CHARACTERISTICS

T-P-1AT-EW/V/1P

Construction base	Ground	
Method of mounting	Piled (P)	
Type of construction	Tracker (T), single axis (1A)	
Module orientation	East-west (EW)	
Module layout	Vertical (V)	
PV module length (MAX)	2300	
Type of tracking	Automatic, horizontal ¹	
Tracking algorithm	Direct astronomical patterns; Tracking precision = 2,0°2	
Rotation range	±60°	
Ground cover factor	Any configuration determined by the customer (from 32% to 50%)	
PV module compatibility	Standard/Bifacial	
Drive system	1 independent horizontal rotation drive per 1 tracker	
Modules per tracker	max 60 (individual configuration possible)	
Power supply	dedicated photovoltaic modules + 230V AC 50/60 Hz ³ battery	
Communication	Zigbee® wireless (or wired RS-485) communication system	
Monitoring	Modbus TCP/IP, possibity of integration with SCADA system	
Adaptation to the slope of terrain	up to 6% in N-S direction	
Wind resistance	1) Up to 80 km/h in any given position	
	2) Up to 140 km/h in horizontal or any position configured as neutral	
Method of distribution	Individual order	


¹Recommended alignment of the tracker axis along the north-south direction.
²Possible individual adjustment of traction to the topography of the terrain.
³Possibility of UPS usage.

rbtisolar Product catalog

rbtsolar.com

 \leftarrow

Trackers (T)

Central drive 2. Secondary beam Central IPE 160 drive column 3. 4. Beam connector TCU controller 5. 6. Main beam Damper upper arm 8. Main beam bearing 9. Damper low joint 10. Main column 11 **12.** Purlin runner 13. Purlin joint

RBTSOLAR-1AT-PLN-J

14. Damper RBTSOLAR-1AT-TGB

Assembly method:

Screw connections. Designed for fast and easy installation. No on-site welding or drilling required. Materials: Construction graded steel.

Maintenance-free bearings. Inspection and maintenance of the rotary drive every 2 years.

Technical inspections according to individual arrangements.